A Unified Gas-kinetic Scheme for Continuum and Rarefied
Flows

K. Xu* and J.C. Huang

*Mathematics Department, Hong Kong University of ScienceTathnology, Hong Kong
TDepartment of Merchant Marine, National Taiwan Ocean Ursitg, Keelung 20224, Taiwan

Abstract.

With discretized particle velocity space, a multi-scaléfied gas-kinetic scheme for entire Knudsen number flows is
constructed based on the BGK model. The current schemeeoalusely the update of macroscopic conservative vagable
with the update of microscopic gas distribution functiomhini a time step. In comparison with many existing kineticesoes
for the Boltzmann equation, the current method has no diffita get accurate Navier-Stokes (NS) solutions in theicomim
flow regime with a time step being much larger than the paridllision time. At the same time, the rarefied flow solution,
even in the free molecule limit, can be captured accurately.
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INTRODUCTION

The development of accurate numerical methods for all fligimes is challenging. The Boltzmann equation describes
the time evolution of the density distribution of a monatowfilute gas with binary elastic collisions. The fluid dynami
Navier-Stokes (NS), Burnett and Super-Burnett equatiande derived from the Boltzmann equation. The Boltzmann
equation is valid from the continuum flow regime to the fredeunale flow. So, theoretically a unified kinetic method
which is valid in the whole range of Knudsen number can beldgeg once the numerical discretization is properly
designed. In the framework of deterministic approximatid®e most popular class of methods is based on the so-
called discrete velocity methods (DVM) or Discrete Ordaitethod (DOM) of the Boltzmann equation [4, 11, 6, 5].
These methods use regular discretization of particle glepace. Most of these methods can give accurate numerical
solution for high Knudsen number flows, such as those fromipiper transition to the free molecule regime. However,
in the continuum flow regime, it is recognized that they hatfécdlty in the capturing of the Navier-Stokes solutions,
especially for the high Reynolds nhumber flows, where theniite particle collisions take place. Under this situation
the requirement of the time step being less than the padlésion time makes these methods prohibitive in the
continuum flow application. In order to overcome the abowvécdities, we need a correct understanding of the
Boltzmann equation. Even though the individual particleseraent has distinct transport and collision process, once
this process is described by a statistical model, such aBdhemann equation, the transport and collision processes
are coupled everywhere in space and time. To separate therarimally, such as the operator splitting methods, is
inconsistent with the underlying physical model. In thetpasrs, the gas-kinetic BGK-NS scheme for the Navier-
Stokes solutions has been well developed [10], and has lbeeessfully applied for the continuum flow simulations
from nearly incompressible to hypersonic viscous and heatlacting flows. In the BGK-NS method, the particle
velocity space is continuous and is integrated out in thedl@tuations in a finite volume scheme. This is not surprised
because in the fluid regime, based on the Chapman-Enskogs®pahe gas distribution function for the viscous flow
is well-defined. Therefore, the efficiency of the BGK-NS nueths similar to the traditional NS flow solver, where
the same CFL condition is used for the determination of titep.dn this paper we are going to extend the BGK-NS
method from the continuum flow to the rarefied regime, whidtudes the free molecule limit. In order to do that,
we have to discretize the particle velocity space as wetlabse the real gas distribution function in the highly non-
equilibrium region can be hardly described by a Maxwelligtribution function and its derivatives. So, the current
method can be also considered as a discrete velocity veo$ithie BGK-NS scheme. At the same time, in order to
efficiently solve the kinetic scheme, a multi-scale methogyp of updating both microscopic and macroscopic flow
variables is developed.



UNIFIED GAS-KINETIC SCHEME

The one-dimensional gas-kinetic BGK equation can be wriie[2]

ftruf=93=" (1)
T
wheref is the gas distribution function arglis the equilibrium state approached byBoth f andg are functions of
spacex, timet, particle velocitiea, and internal variablé. The particle collision time is related to the viscosity
and heat conduction coefficients, i.e5 pu/p wherep is the dynamic viscosity coefficient amds the pressure. The
equilibrium state is a Maxwellian distribution,
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wherep is the densityJ is the macroscopic velocity in thedirection,A is equal tom/2kT, mis the molecular mass,
k is the Boltzmann constant, afidis the temperature. For 1D flow, the total number of degredseefiomK in ¢ is
equal to(3—y)/(y—1). For example, for a monatomic gas with= 5/3, K is equal to 2 to account for the particle
motion in they andz-directions. In the equilibrium state, the internal vaté&? is equal tof? = El + EZ + .+ EK
The relation between mags momentunpU, and energyE densities with the distribution functiohis
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whereyy, is the component of the vector of moments
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andd= = dudé;dé,...dék is the volume element in the phase space @&h= dé;dé,...dék . Since mass, momentum,
and energy are conserved during particle collisidnsndg satisfy the conservation constraint,
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at any point in space and time.

Before we introduce discrete ordinate method, let's firsicditize the physical space, time, and particle ve-
locity space. The physical space is divided into numerigdliscwith cell sizeAx, and the jth-cell is given by
X € [Xj_1/2,Xj41/2] with cell sizeAx = X;1/» — Xj_1/». The temporal discretization is denotedtyfor the nth-time
step. The particle velocity space is discretized by421 subcells with cell sizéu, and the center ofth-velocity
interval isu = kAu, and it represents the average velodiin that interval,

1
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Then, the averaged gas distribution function in ¢e#t time stef", and around particle velocity, is given by

ue [(k—=)Au, (k+ %)Au], k=-N,—(N-1),..,~1,0,1,...,(N—1),N.

f(xj,t" u) = =

X U+ Au
J+1/2/ : (x,t",u)dxdu (4)
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whereAx is the cell size anduw is the particle velocity interval defined later.
The BGK equation (1) can be written as
—f
ft:—ufx+gT. )
Integrating the above equation in a control voluy‘;aé“/2 trHl( .)dxdt/Ax, and keeping the particle velocity space

continuous, the above differential equation becomes agiat equation
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where fAj+1/2 is the gas distribution function at the cell interfage, /. The above equation is exact and there is no
any numerical error introduced yet. For a kinetic scheme,tewsms on the right hand side of the above equation have
to be numerically evaluated. With the discretization ofcepg, timet", and particle velocityy, the finite volume
scheme based on the integral solution of equation (6) is
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wheref”k is the averaged distribution function in thté-cell x € [x;_1/2,Xj+1/2] at the particle velocityy. Instead of

using upwinding scheme for the evaluation of the distrinufunction at a cell interface, the solutldipH 2k in the
above equation is constructed from an integral solutiom@BGK model (1) using the method of characteristics,
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wherex’ = xj 1/, — U(t —t') is the particle trajectory antf), is the initial gas distribution function df at timet =t"
around the cell interfacg;,,/, at the particle velocityy, i.e., fy, = fg(x,t",u, &). In the above equatiorfy, is
known at the beginning of each time st&p With the |mplementat|0n of BGK-NS techniques for the intgn of
equilibrium distribution function, the distribution in H&) at the discretized particle velocity can be expressed as

fi11/2x(0,) = G172+ fi1/2k )

wheregj, 1,5 is all terms related to the integration of the equilibriurateg and ﬂ'+1/2,k is the terms from initial
condition fo. The collision timert in the above distribution function is determined by= 1(Tp)/po, WhereTy is
the temperature angy is the pressure, and both of them can be evaluated ¥rat the cell interface. The above
time-accurate gas distribution function can be used inEdof the fluxes at a cell interface.

In order to discretize the collision term in Eq.(7) efficigrand accurately, a multiscale unified formulation is the
following. Let's first take momengy on Eq.(7). Due to the vanishing of the particle collisiomdor the conservative
variables, we have

tn+1
wht = wih+ Ax// u(Gj-1/2— Gjy1/2)gdtdu
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wheregdj 1> has the same expressiongs1, . but is interested in a continuous particle velocity space u. The
integration of the equilibrium pag ¢an be evaluated exactly and the integration of the nonlibgjum part f can be
done using the quadrature. For the update of the consesuatiiables, the difference between the above formulation
and the BGK-NS scheme is that the discrete sum is used fomtegration of the initial distribution functioffip

in particle velocity space. For a highly non-equilibriumwahe real distribution functiorip can be a complicated
function, and a discretization of particle velocity spaes o be used. For the original BGK-NS scheme targeting on
the NS solutions [10], the initial gas distribution functify can be reconstructed from the distribution of macroscopic
variables according to the Chapman-Enskog expansioneldrer the specific form of initial conditiofyy can be
mathematically reconstructed. In the continuum flow lirdite to the sufficient number of particle collisions and with
the condition of time step being much larger than the partedllision time, the contribution of the integration of
the equilibrium statey;”, /> will be dominant in the final solution of the distribution fetion fi, 15 The dj 1,2

itself gives a corresponding NS distribution function, @hd contribution from initial termﬂ-ﬂ/z,k vanishes. As a

result, the updated discrete form of the distribution ficm:tf”;rl will present a Chapman-Enskog NS distribution
function. Therefore, in the continuum flow regime, the BGIé—Eslcheme with continuous particle velocity space and
the current unified method with discretized particle valpspace will become the same scheme. In the continuum
flow regime, for the NS solutions the update of the consereatariables through the above equation (10) is enough,
because the gas distribution functiéfj* can be reconstructed from the updated conservative vasalbherefore,

for the continuum flow only, like the BGK-NS scheme [10], wenttmeed to update the gas distribution function.



In the highly non-equilibrium flow regime, Equation (10) fie update of conservative variables is still correct. For
example, in the collisionless limit, the non-equilibriurarpf;_; > and f;, 1> will take dominant effect, and the
contribution from the equilibrium part vanishes. Therefahe unified scheme has the correct collision-less limit as
well.

In general, based on the above updated conservative \@sjalbk can immediately obtain the equilibrium gas
distribution functiorl‘:;?frkl inside each cell, therefore based on Eq.(7) the unified kiseheme for the update of gas
distribution function becomes
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where trapezoidal rule has been used for the time integrafioollision term. So, from the above equation, the unified
multiscale scheme for the update of gas distribution fumds
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where no iteration is needed for the update of the aboveisnlukhe particle collision timezsjn and r}”l are defined

based on the temperature and pressure in the cellfj.e-,u(T")/p} and rjr”rl = u(TJ-”*l)/p'j‘“, which are known
due to the update of macroscopic flow variables in Eq.(10).

The unified scheme is a multiscale hybrid method with bothrostopic and microscopic variable updates. The
traditional hybrid approach is based on a geometrical ohédr{@ifferent flow regions, different governing equations
are solved. At the same time, different patches are condéhteugh buffer zone. However, instead of solving
different governing equations as most hybrid schemes da@ouple them in the way of evaluating the flux function
across the cell interface. In the continuum flow regime, titerisive particle collision will drive the system close
to equilibrium state. Therefore, the part based on the ratem of equilibrium statey; ;> in Eq.(9) at the cell
interface will automatically take a dominant role. It cand®wn that in smooth flow regiogy 1>« gives precisely
the NS gas distribution function. Since there is one-to-coreespondence between macroscopic flow variables and
the equilibrium distribution, the integration of the edjuilum part can be also fairly considered as the macroscopic
composition part of the scheme. In the free molecule limthvimadequate particle collisions, the integral solution a
the cell interface will automatically present a purely upding scheme, where the particle transport frgm /5 will
be the main part. Therefore, the scheme captures the flonigshiysthe collisionless limit as well. This unified
approach can be considered as a dynamic hybrid method ihefegeometrical one. The reason for most other
approaches to use a geometrical way is due to the fact thiatfline functions across a cell interface are solely
based on the kinetic upwinding discretization, i.e., thecalted f;. /5 term in Eq.(9). As we know, the kinetic
upwinding is only correct in the collisionless or highly requilibrium regime. Therefore, in the traditional hybrid
scheme, the computational domain has to be divided intdiBqum and non-equilibrium flow regions. Physically
this kind of geometrical division is artificial and there sidbhave no region where both approaches are applicable,
because the above two approaches have significant dyndfeiedces in their flux evaluation. In the unified method,
a single computation domain is used and the dynamic diftexem the particle behavior is obtained by solving the full
approximate Boltzmann equation, which is valid all the wapnf the continuum to rarefied flows. Certainly, in order
to save computational time we may also develop a hybrid ntetftuch uses the current unified scheme as a non-
equilibrium flow solver and adopts the BGK-NS method as ainanin flow solver. In the continuum flow regime,
this kind of hybrid scheme is actually a scheme which is diffic from the unified method only by simply replacing
the discretized particle distribution functidg of Eq.(8) by a distribution functiorip of the Chapman-Enskog NS-
type with a continuous particle velocity space [10]. In tlemtinuum flow regime, only conservative flow variables
are concerned. The flux evaluation for the conservativeabées update in Eq.(10) is simply a discretized version of
the BGK-NS method for the NS equations. Therfore, in this flegime, we can use a time step which is much larger
than the particle collision time, i.eAt >> 1. In other words, in the continuum limit, the integral sotutifrom the
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FIGURE 1. Argon shock structure at Mach number2 {left) and 9 (right). The solutions are compared with Bolénn solution
[8] and experimental measurement [1].

equilibrium state is dominant, and the updating of the msawpic flow variables follow the NS solutions. Also, due
to the update of both macroscopic and microscopic variablegnplicit discretization of particle collision term can
be achieved, and the time step for the unified scheme is muchased, especially in the continuum flow regime.
Most importantly, due to the update of macroscopic vargttee heat flux can be modified and the Prandtl number of
the scheme can be adjusted to any number[10] without madjfyie BGK model itself.

NUMERICAL EXPERIMENTS

The unified scheme has been tested from free molecule flovetbl&vier-Stokes solutions. In this section, we only
present the shock structure tests from the low Mach numimgttilmium flow) to high Mach number (highly non-
equilibrium flow). First we present test cases on the shacictre for argon gas &l = 1.2 with Pr = 2/3. Ohwada
solved the full Boltzmann equation for this case [8]. Forltlaed sphere molecules, the viscosity coefficignt T°°
andPr = 2/3, where the x-coordinate is normalized $y1A; /2 andA; is the mean free path of the gas molecules at
the upstream condition. Figure 1 shows the density, tentyreraf a shock structure. Comparisons of the results from
the unified scheme are made with the solutions of the Boltzneyuation. The results from the direct Boltzmann
solver and the current solutions have good agreement. AhMamber 12, where the local Knudsen numbers are
less than M2, as expected, the standard Navier-Stokes equationsesuffiie current solution also indicates that
the unified scheme can capture accurately the NS solutiozd. We calculate Mach 9 argon shock structure from
the unified scheme. Figure 1 also shows the shock structaregstosity coefficienuy ~ T%72 andPr = 2/3 case.
Both solution from the unified scheme and experimental datgeesented. Figure 2 presents the reciprocal of shock
thickness vs. Mach numbers. The solutions from the unifieése, DSMC [3], experimental measurements [1], and
Burnett solution [7], are presented. Shock structure ¢aticun is one of the most difficult test cases for the valiolati

of non-equilibrium flow solvers. The above simulation résuhblidate the unified approach presented in this paper.

CONCLUSION

In this paper, we present a unified kinetic approach for flawtké entire Knudsen number. The validity of the approach
is based on its fully coupled representation of particle ement, i.e., transport and collision. Different from many

other approaches, the critical step is that the integratisol of the kinetic model is used in the flux evaluation asros

the cell interface. The integral solution gives an accurapgesentation in both continuum and free molecule flows.
The current scheme can be considered as a dynamic hybricdbdhetinere the different flow behavior is obtained

through the different limits of the integral solution of agie kinetic equation, instead of solving different govegn
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FIGURE 2. Reciprocal shock thickness vs. Mach number. The resultadecunified method, DSMC [3], experimental mea-
surements [1], and Burnett solutions [7].

equations in different flow regimes. The weakness for thetraxisting kinetic methods is that a purely upwinding
technique is used in the flux evaluation for the transporhtefy, which is equivalent to solving the collision-less
Boltzmann equation and its solution is only a partial solutdf the full integral solution used in the unified scheme.
Theoretically, the Boltzmann equation is a statistical eladth a continuous particle transport and collision pgsce
at any point in space and time. So, there is no reason to ket these particles which transport across the cell
interface will not suffer particle collision during its mement toward the cell interface. Therefore, an "exact'grake
solution of the full kinetic equation has to be used and ihis key for the success of the unified scheme. Due to its
multi-scale nature of the unified scheme, through the upafateacroscopic flow variables the heat flux of the scheme
can be modified as well according to correct Prandtl number.
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