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Abstract.
With discretized particle velocity space, a multi-scale unified gas-kinetic scheme for entire Knudsen number flows is

constructed based on the BGK model. The current scheme couples closely the update of macroscopic conservative variables
with the update of microscopic gas distribution function within a time step. In comparison with many existing kinetic schemes
for the Boltzmann equation, the current method has no difficulty to get accurate Navier-Stokes (NS) solutions in the continuum
flow regime with a time step being much larger than the particle collision time. At the same time, the rarefied flow solution,
even in the free molecule limit, can be captured accurately.
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INTRODUCTION

The development of accurate numerical methods for all flow regimes is challenging. The Boltzmann equation describes
the time evolution of the density distribution of a monatomic dilute gas with binary elastic collisions. The fluid dynamic
Navier-Stokes (NS), Burnett and Super-Burnett equations can be derived from the Boltzmann equation. The Boltzmann
equation is valid from the continuum flow regime to the free molecule flow. So, theoretically a unified kinetic method
which is valid in the whole range of Knudsen number can be developed once the numerical discretization is properly
designed. In the framework of deterministic approximation, the most popular class of methods is based on the so-
called discrete velocity methods (DVM) or Discrete Ordinate Method (DOM) of the Boltzmann equation [4, 11, 6, 5].
These methods use regular discretization of particle velocity space. Most of these methods can give accurate numerical
solution for high Knudsen number flows, such as those from theupper transition to the free molecule regime. However,
in the continuum flow regime, it is recognized that they have difficulty in the capturing of the Navier-Stokes solutions,
especially for the high Reynolds number flows, where the intensive particle collisions take place. Under this situation,
the requirement of the time step being less than the particlecollision time makes these methods prohibitive in the
continuum flow application. In order to overcome the above difficulties, we need a correct understanding of the
Boltzmann equation. Even though the individual particle movement has distinct transport and collision process, once
this process is described by a statistical model, such as theBoltzmann equation, the transport and collision processes
are coupled everywhere in space and time. To separate them numerically, such as the operator splitting methods, is
inconsistent with the underlying physical model. In the past years, the gas-kinetic BGK-NS scheme for the Navier-
Stokes solutions has been well developed [10], and has been successfully applied for the continuum flow simulations
from nearly incompressible to hypersonic viscous and heat conducting flows. In the BGK-NS method, the particle
velocity space is continuous and is integrated out in the fluxevaluations in a finite volume scheme. This is not surprised
because in the fluid regime, based on the Chapman-Enskog expansion the gas distribution function for the viscous flow
is well-defined. Therefore, the efficiency of the BGK-NS method is similar to the traditional NS flow solver, where
the same CFL condition is used for the determination of time step. In this paper we are going to extend the BGK-NS
method from the continuum flow to the rarefied regime, which includes the free molecule limit. In order to do that,
we have to discretize the particle velocity space as well, because the real gas distribution function in the highly non-
equilibrium region can be hardly described by a Maxwellian distribution function and its derivatives. So, the current
method can be also considered as a discrete velocity versionof the BGK-NS scheme. At the same time, in order to
efficiently solve the kinetic scheme, a multi-scale methodology of updating both microscopic and macroscopic flow
variables is developed.



UNIFIED GAS-KINETIC SCHEME

The one-dimensional gas-kinetic BGK equation can be written as [2]

ft +u fx =
g− f

τ
, (1)

where f is the gas distribution function andg is the equilibrium state approached byf . Both f andg are functions of
spacex, time t, particle velocitiesu, and internal variableξ . The particle collision timeτ is related to the viscosity
and heat conduction coefficients, i.e.,τ = µ/p whereµ is the dynamic viscosity coefficient andp is the pressure. The
equilibrium state is a Maxwellian distribution,

g = ρ(
λ
π

)
K+1

2 e−λ ((u−U)2+ξ 2),

whereρ is the density,U is the macroscopic velocity in thex direction,λ is equal tom/2kT, m is the molecular mass,
k is the Boltzmann constant, andT is the temperature. For 1D flow, the total number of degrees offreedomK in ξ is
equal to(3− γ)/(γ −1). For example, for a monatomic gas withγ = 5/3, K is equal to 2 to account for the particle
motion in they andz-directions. In the equilibrium state, the internal variable ξ 2 is equal toξ 2 = ξ 2

1 + ξ 2
2 + ...+ ξ 2

K .
The relation between massρ , momentumρU , and energyρE densities with the distribution functionf is

( ρ
ρU
ρE

)

=

∫

ψα f dΞ, α = 1,2,3, (2)

whereψα is the component of the vector of moments

ψ = (ψ1,ψ2,ψ3)
T = (1,u,

1
2
(u2 + ξ 2))T ,

anddΞ = dudξ1dξ2...dξK is the volume element in the phase space withdξ = dξ1dξ2...dξK . Since mass, momentum,
and energy are conserved during particle collisions,f andg satisfy the conservation constraint,

∫

(g− f )ψαdΞ = 0, α = 1,2,3, (3)

at any point in space and time.
Before we introduce discrete ordinate method, let’s first discretize the physical space, time, and particle ve-

locity space. The physical space is divided into numerical cells with cell size∆x, and the jth-cell is given by
x∈ [x j−1/2,x j+1/2] with cell size∆x = x j+1/2− x j−1/2. The temporal discretization is denoted bytn for thenth-time
step. The particle velocity space is discretized by 2N + 1 subcells with cell size∆u, and the center ofkth-velocity
interval isuk = k∆u, and it represents the average velocityu in that interval,

u∈ [(k−
1
2
)∆u,(k+

1
2
)∆u], k = −N,−(N−1), ...,−1,0,1, ...,(N−1),N.

Then, the averaged gas distribution function in cellj, at time steptn, and around particle velocityuk, is given by

f (x j , t
n,uk) = f n

j ,k =
1

∆x∆u

∫ xj+1/2

xj−1/2

∫ uk+
1
2∆u

uk−
1
2∆u

f (x,tn,u)dxdu, (4)

where∆x is the cell size and∆u is the particle velocity interval defined later.
The BGK equation (1) can be written as

ft = −u fx +
g− f

τ
. (5)

Integrating the above equation in a control volume
∫ xj+1/2

xj−1/2

∫ tn+1

tn (...)dxdt/∆x, and keeping the particle velocity space
continuous, the above differential equation becomes an integral equation

f n+1
j = f n

j +
1

∆x

∫ tn+1

tn
(uf̂ j−1/2(t)−uf̂ j+1/2(t))dt+

1
∆x

∫ tn+1

tn

∫ xj+1/2

xj−1/2

g− f
τ

dxdt, (6)



where f̂ j+1/2 is the gas distribution function at the cell interfacex j+1/2. The above equation is exact and there is no
any numerical error introduced yet. For a kinetic scheme, two terms on the right hand side of the above equation have
to be numerically evaluated. With the discretization of space x j , time tn, and particle velocityuk, the finite volume
scheme based on the integral solution of equation (6) is

f n+1
j ,k = f n

j ,k +
1

∆x

∫

(uk f̂ j−1/2,k−uk f̂ j+1/2,k)dt+
1

∆x

∫ ∫

g− f
τ

dxdt, (7)

where f n
j ,k is the averaged distribution function in thejth-cell x∈ [x j−1/2,x j+1/2] at the particle velocityuk. Instead of

using upwinding scheme for the evaluation of the distribution function at a cell interface, the solution̂f j+1/2,k in the
above equation is constructed from an integral solution of the BGK model (1) using the method of characteristics,

f̂ j+1/2,k = f (x j+1/2,t,uk,ξ ) =
1
τ

∫ tn+1

tn
g(x′,t ′,uk,ξ )e−(t−t′)/τdt′ (8)

+e−(t−tn)/τ f n
0,k(x j+1/2−uk(t − tn),tn,uk,ξ ),

wherex′ = x j+1/2−uk(t − t ′) is the particle trajectory andf n
0,k is the initial gas distribution function off at timet = tn

around the cell interfacex j+1/2 at the particle velocityuk, i.e., f n
0,k = f n

0 (x,tn,uk,ξ ). In the above equation,f n
0,k, is

known at the beginning of each time steptn. With the implementation of BGK-NS techniques for the integration of
equilibrium distribution function, the distribution in Eq.(8) at the discretized particle velocityuk can be expressed as

f̂ j+1/2,k(0,t) = g̃ j+1/2,k + f̃ j+1/2,k, (9)

whereg̃ j+1/2,k is all terms related to the integration of the equilibrium stateg and f̃ j+1/2,k is the terms from initial
condition f0. The collision timeτ in the above distribution function is determined byτ = µ(T0)/p0, whereT0 is
the temperature andp0 is the pressure, and both of them can be evaluated fromW0 at the cell interface. The above
time-accurate gas distribution function can be used in Eq.(7) for the fluxes at a cell interface.

In order to discretize the collision term in Eq.(7) efficiently and accurately, a multiscale unified formulation is the
following. Let’s first take momentψ on Eq.(7). Due to the vanishing of the particle collision term for the conservative
variables, we have

Wn+1
j = Wn

j +
1

∆x

∫ ∫ tn+1

tn
u(g̃ j−1/2− g̃ j+1/2)ψdtdu

+
1

∆x ∑
k

∫ tn+1

tn
uk( f̃ j−1/2,k− f̃ j+1/2,k)ψdt, (10)

whereg̃ j+1/2 has the same expression as ˜g j+1/2,k, but is interested in a continuous particle velocity spaceuk = u. The
integration of the equilibrium part ˜g can be evaluated exactly and the integration of the non-equilibrium part f̃ can be
done using the quadrature. For the update of the conservative variables, the difference between the above formulation
and the BGK-NS scheme is that the discrete sum is used for the integration of the initial distribution functionf0
in particle velocity space. For a highly non-equilibrium flow, the real distribution functionf0 can be a complicated
function, and a discretization of particle velocity space has to be used. For the original BGK-NS scheme targeting on
the NS solutions [10], the initial gas distribution function f0 can be reconstructed from the distribution of macroscopic
variables according to the Chapman-Enskog expansion. Therefore, the specific form of initial conditionf0 can be
mathematically reconstructed. In the continuum flow limit,due to the sufficient number of particle collisions and with
the condition of time step being much larger than the particle collision time, the contribution of the integration of
the equilibrium state ˜g j+1/2 will be dominant in the final solution of the distribution function f̂ j+1/2,k. The g̃ j+1/2

itself gives a corresponding NS distribution function, andthe contribution from initial termf̃ j+1/2,k vanishes. As a
result, the updated discrete form of the distribution function f n+1

j ,k will present a Chapman-Enskog NS distribution
function. Therefore, in the continuum flow regime, the BGK-NS scheme with continuous particle velocity space and
the current unified method with discretized particle velocity space will become the same scheme. In the continuum
flow regime, for the NS solutions the update of the conservative variables through the above equation (10) is enough,
because the gas distribution functionf n+1

j ,k can be reconstructed from the updated conservative variables. Therefore,
for the continuum flow only, like the BGK-NS scheme [10], we don’t need to update the gas distribution function.



In the highly non-equilibrium flow regime, Equation (10) forthe update of conservative variables is still correct. For
example, in the collisionless limit, the non-equilibrium part f̃ j−1/2,k and f̃ j+1/2,k will take dominant effect, and the
contribution from the equilibrium part vanishes. Therefore, the unified scheme has the correct collision-less limit as
well.

In general, based on the above updated conservative variables, we can immediately obtain the equilibrium gas
distribution functiongn+1

j ,k inside each cell, therefore based on Eq.(7) the unified kinetic scheme for the update of gas
distribution function becomes

f n+1
j ,k = f n

j ,k +
1

∆x

(

∫ tn+1

tn
uk(g̃ j−1/2,k− g̃ j+1/2,k)dt +

∫ tn+1

tn
uk( f̃ j−1/2,k− f̃ j+1/2,k)dt

)

+
∆t
2

(
gn+1

j ,k − f n+1
j ,k

τn+1 +
gn

j ,k− f n
j ,k

τn ), (11)

where trapezoidal rule has been used for the time integration of collision term. So, from the above equation, the unified
multiscale scheme for the update of gas distribution function is

f n+1
j ,k = (1+

∆t
2τn+1 )−1

[

f n
j ,k +

1
∆x

(

∫ tn+1

tn
uk(g̃ j−1/2,k− g̃ j+1/2,k) dt

+

∫ tn+1

tn
uk( f̃ j−1/2,k− f̃ j+1/2,k)dt

)

+
∆t
2

(
gn+1

j ,k

τn+1
j

+
gn

j ,k− f n
j ,k

τn
j

)

]

, (12)

where no iteration is needed for the update of the above solution. The particle collision timesτn
j andτn+1

j are defined

based on the temperature and pressure in the cell, i.e.,τn
j = µ(Tn

j )/pn
j andτn+1

j = µ(Tn+1
j )/pn+1

j , which are known
due to the update of macroscopic flow variables in Eq.(10).

The unified scheme is a multiscale hybrid method with both macroscopic and microscopic variable updates. The
traditional hybrid approach is based on a geometrical one [9]. In different flow regions, different governing equations
are solved. At the same time, different patches are connected through buffer zone. However, instead of solving
different governing equations as most hybrid schemes do, wecouple them in the way of evaluating the flux function
across the cell interface. In the continuum flow regime, the intensive particle collision will drive the system close
to equilibrium state. Therefore, the part based on the integration of equilibrium state ˜g j+1/2,k in Eq.(9) at the cell
interface will automatically take a dominant role. It can beshown that in smooth flow region ˜g j+1/2,k gives precisely
the NS gas distribution function. Since there is one-to-onecorrespondence between macroscopic flow variables and
the equilibrium distribution, the integration of the equilibrium part can be also fairly considered as the macroscopic
composition part of the scheme. In the free molecule limit with inadequate particle collisions, the integral solution at
the cell interface will automatically present a purely upwinding scheme, where the particle transport fromf̃ j+1/2,k will
be the main part. Therefore, the scheme captures the flow physics in the collisionless limit as well. This unified
approach can be considered as a dynamic hybrid method instead of geometrical one. The reason for most other
approaches to use a geometrical way is due to the fact that their flux functions across a cell interface are solely
based on the kinetic upwinding discretization, i.e., the so-called f̃ j+1/2,k term in Eq.(9). As we know, the kinetic
upwinding is only correct in the collisionless or highly non-equilibrium regime. Therefore, in the traditional hybrid
scheme, the computational domain has to be divided into equilibrium and non-equilibrium flow regions. Physically
this kind of geometrical division is artificial and there should have no region where both approaches are applicable,
because the above two approaches have significant dynamic differences in their flux evaluation. In the unified method,
a single computation domain is used and the dynamic differences in the particle behavior is obtained by solving the full
approximate Boltzmann equation, which is valid all the way from the continuum to rarefied flows. Certainly, in order
to save computational time we may also develop a hybrid method which uses the current unified scheme as a non-
equilibrium flow solver and adopts the BGK-NS method as a continuum flow solver. In the continuum flow regime,
this kind of hybrid scheme is actually a scheme which is different from the unified method only by simply replacing
the discretized particle distribution functionf0 of Eq.(8) by a distribution functionf0 of the Chapman-Enskog NS-
type with a continuous particle velocity space [10]. In the continuum flow regime, only conservative flow variables
are concerned. The flux evaluation for the conservative variables update in Eq.(10) is simply a discretized version of
the BGK-NS method for the NS equations. Therfore, in this flowregime, we can use a time step which is much larger
than the particle collision time, i.e.,∆t >> τ. In other words, in the continuum limit, the integral solution from the
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FIGURE 1. Argon shock structure at Mach number2 1.2 (left) and 9 (right). The solutions are compared with Boltzmann solution
[8] and experimental measurement [1].

equilibrium state is dominant, and the updating of the macroscopic flow variables follow the NS solutions. Also, due
to the update of both macroscopic and microscopic variables, an implicit discretization of particle collision term can
be achieved, and the time step for the unified scheme is much increased, especially in the continuum flow regime.
Most importantly, due to the update of macroscopic variables, the heat flux can be modified and the Prandtl number of
the scheme can be adjusted to any number[10] without modifying the BGK model itself.

NUMERICAL EXPERIMENTS

The unified scheme has been tested from free molecule flow to the Navier-Stokes solutions. In this section, we only
present the shock structure tests from the low Mach number (continuum flow) to high Mach number (highly non-
equilibrium flow). First we present test cases on the shock structure for argon gas atM = 1.2 with Pr = 2/3. Ohwada
solved the full Boltzmann equation for this case [8]. For thehard sphere molecules, the viscosity coefficientµ ∼ T0.5

andPr = 2/3, where the x-coordinate is normalized by
√

πλ1/2 andλ1 is the mean free path of the gas molecules at
the upstream condition. Figure 1 shows the density, temperature of a shock structure. Comparisons of the results from
the unified scheme are made with the solutions of the Boltzmann equation. The results from the direct Boltzmann
solver and the current solutions have good agreement. At Mach number 1.2, where the local Knudsen numbers are
less than 0.02, as expected, the standard Navier-Stokes equations suffice. The current solution also indicates that
the unified scheme can capture accurately the NS solutions. Next we calculate Mach 9 argon shock structure from
the unified scheme. Figure 1 also shows the shock structures for viscosity coefficientµ ∼ T0.72 andPr = 2/3 case.
Both solution from the unified scheme and experimental data are presented. Figure 2 presents the reciprocal of shock
thickness vs. Mach numbers. The solutions from the unified scheme, DSMC [3], experimental measurements [1], and
Burnett solution [7], are presented. Shock structure calculation is one of the most difficult test cases for the validation
of non-equilibrium flow solvers. The above simulation results validate the unified approach presented in this paper.

CONCLUSION

In this paper, we present a unified kinetic approach for flows in the entire Knudsen number. The validity of the approach
is based on its fully coupled representation of particle movement, i.e., transport and collision. Different from many
other approaches, the critical step is that the integral solution of the kinetic model is used in the flux evaluation across
the cell interface. The integral solution gives an accuraterepresentation in both continuum and free molecule flows.
The current scheme can be considered as a dynamic hybrid method, where the different flow behavior is obtained
through the different limits of the integral solution of a single kinetic equation, instead of solving different governing
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equations in different flow regimes. The weakness for the most existing kinetic methods is that a purely upwinding
technique is used in the flux evaluation for the transport term u fx, which is equivalent to solving the collision-less
Boltzmann equation and its solution is only a partial solution of the full integral solution used in the unified scheme.
Theoretically, the Boltzmann equation is a statistical model with a continuous particle transport and collision process
at any point in space and time. So, there is no reason to believe that these particles which transport across the cell
interface will not suffer particle collision during its movement toward the cell interface. Therefore, an "exact" integral
solution of the full kinetic equation has to be used and it is the key for the success of the unified scheme. Due to its
multi-scale nature of the unified scheme, through the updateof macroscopic flow variables the heat flux of the scheme
can be modified as well according to correct Prandtl number.
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